

pipettor

Robust, easy to use Python package for running Unix process pipelines

Contents:

	Pipettor Overview

	Installation

	Usage

	Pipettor Library

	Contributing

	Credits

	History

Indices and tables

	Index

	Module Index

	Search Page

Pipettor Overview

pipettor - robust, easy to use Python package for running Unix process pipelines

Features

	Creating process pipelines in Python is either complex (e.g. subprocess),
or not robust (e.g. os.system()). This package aims to address these shortcomings.

	Command pipelines are simply specified as a sequence of commands, with each
command represented as a sequence of arguments.

	Failure of any process in the pipeline results in an exception, with stderr
included in the exception.

	Pipeline stdin/stdout/stderr can be passed through from parent process,
redirected to a file, or read/written by the parent process.

	Asynchronous reading and writing to and from the pipeline maybe done without risk of
deadlock.

	Pipeline can run asynchronously or block until completion.

	Popen-style File-like objects for reading or writing a pipeline.

	Documentation: https://pipettor.readthedocs.org.

Installation

At the command line:

$ pip install pipettor

Source is available from: https://github.com/diekhans/pipettor

Usage

A single process in pipettor is specified as sequence (list or tuple) of
the command and its arguments. A process pipeline is specified as a sequence
of such commands (lists of lists, lists of tuples, etc).
Functions to create processes check if a specified command is a sequence of
commands or a single command based on the sequence structure.

Example commands are:

("date",)
("sort", "-u", "/etc/stuff")
[("sort", "-u", "/etc/stuff"), ("wc", "-l")]

Commands are not run through the UNIX shell to prevent security and
robustness problems.

A non-zero exit or signal termination from any process in a pipe results in a
pipettor.ProcessException, which contains the stderr of the
failed process unless redirected.

The simplest way to execute a pipeline synchronously is to use
the pipettor.run() or pipettor.runout() functions:

import pipettor
pipettor.run([("sort", "-u", "/etc/hosts"), ("wc", "-l")], stdout="hosts.linecnt")
out = pipettor.runout([("sort", "-u", "/etc/hosts"), ("wc", "-l")])

File-like objects to or from a pipeline maybe create using the
pipettor.Popen class:

import pipettor
rfh = pipettor.Popen([("sort", "-u", "/etc/hosts"), ("wc", "-l")])
wfh = pipettor.Popen([("sort", "-u"), ("wc", "-l")], "w", stdout="uniq.linecnt")

In-memory data can be also be written to pipelines using pipettor.DataWriter objects:

import pipettor
dw = pipettor.DataWriter("line3\nline1\nline2\nline1\n")
pipettor.run([("sort", "-u",), ("wc", "-l")], stdin=dw, stdout="writer.linecnt")

Data can be read from pipelines into memory using pipettor.DataReader objects:

import pipettor
dr = pipettor.DataReader()
pipettor.run([("sort", "-u", "/etc/hosts"), ("wc", "-l")], stdout=dr)
print dr.data

The pipettor.runlex() or pipettor.runlexout() functions pass string arguments
through shlex.split to split them into arguments:

import pipettor
out = pipettor.runlexout("sort -u /etc/hosts")
out = pipettor.runlexout(["sort -u /etc/hosts", ("wc", "-l")])

Full control of process pipelines can be achieved using pipettor.Pipeline
class directly. The pipettor.DataReader and pipettor.DataWriter
object create threads, allowing for both reading and writing to a process without
risk of deadlocking.

Pipettor Library

Function Interface

	
pipettor.run(cmds, stdin=None, stdout=None, stderr=<class 'pipettor.devices.DataReader'>, logger=None, logLevel=None)

	Construct and run an process pipeline. If any of the processes fail,
a ProcessException is throw.

cmds is either a list of arguments for a single process, or a list of
such lists for a pipeline. If the stdin, stdout, or stderr arguments
are none, the open files are are inherited. Otherwise they can be string
file names, file-like objects, file number, or pipettor.Dev
object. stdin is input to the first process, stdout is output to the
last process and stderr is attached to all processed.
pipettor.DataReader and pipettor.DataWriter objects can
be specified for stdin, stdout, or stderr asynchronously I/O with
the pipeline without the danger of deadlock.

If stderr is the class DataReader, a new instance is created for each
process in the pipeline. The contents of stderr will include an exception
if an occurs in that process. If an instance of
pipettor.DataReader is provided, the contents of stderr from all
process will be included in the exception.

	
pipettor.runout(cmds, stdin=None, stderr=<class 'pipettor.devices.DataReader'>, logger=None, logLevel=None, buffering=-1, encoding=None, errors=None)

	Construct and run an process pipeline, returning the output. If any of the
processes fail, a ProcessException is throw.

See the pipettor.run() function for more details. Use
str.splitlines() to split result into lines.

The logger argument can be the name of a logger or a logger object. If
none, default is user.

Specifying binary access results in data of type bytes, otherwise str type
is return. The buffering, encoding, and errors arguments are as used in
the open() function.

	
pipettor.runlex(cmds, stdin=None, stdout=None, stderr=<class 'pipettor.devices.DataReader'>, logger=None, logLevel=None)

	Call pipettor.run(), first splitting commands specified as strings
are split into arguments using shlex.split.

If cmds is a string, it is split into arguments and run as as a single
process. If cmds is a list, a multi-process pipeline is created.
Elements that are strings are split into arguments to form commands.
Elements that are lists are treated as commands without splitting.

	
pipettor.runlexout(cmds, stdin=None, stderr=<class 'pipettor.devices.DataReader'>, logger=None, logLevel=None, buffering=-1, encoding=None, errors=None)

	Call pipettor.runout(), first splitting commands specified
as strings are split into arguments using shlex.split.

If cmds is a string, it is split into arguments and run as as a single
process. If cmds is a list, a multi-process pipeline is created.
Elements that are strings are split into arguments to form commands.
Elements that are lists are treated as commands without splitting.

The logger argument can be the name of a logger or a logger object. If
none, default is user.

Specifying binary access results in data of type bytes, otherwise str type
is returned. The buffering, encoding, and errors arguments are as used in
the open() function.

Pipeline Classes

	
class pipettor.Pipeline(cmds, *, stdin=None, stdout=None, stderr=<class 'pipettor.devices.DataReader'>, logger=None, logLevel=None)

	A process pipeline. Once constructed, the pipeline
is started with start(), poll(), or wait() functions.

The cmds argument is either a list of arguments for a single process, or a
list of such lists for a pipeline. If the stdin/out/err arguments are
none, the open files are are inherited. Otherwise they can be string file
names, file-like objects, file number, or Dev object. Stdin is input to
the first process, stdout is output to the last process and stderr is
attached to all processed. DataReader and DataWriter objects can be
specified for stdin/out/err asynchronously I/O with the pipeline without
the danger of deadlock.

If stderr is the class DataReader, a new instance is created for each
process in the pipeline. The contents of stderr will include an
exception if an occurs in that process. If an instance of DataReader
is provided, the contents of stderr from all process will be included in
the exception.

Command arguments will be converted to strings.

The logger argument can be the name of a logger or a logger object. If
none, default is user.

	
class pipettor.Popen(cmds, mode='r', *, stdin=None, stdout=None, logger=None, logLevel=None, buffering=-1, encoding=None, errors=None)

	File-like object of processes to read from or write to a Pipeline.

The cmds argument is either a list of arguments for a single process,
or a list of such lists for a pipeline. Mode is ‘r’ for a pipeline
who’s output will be read, or ‘w’ for a pipeline to that is to have
data written to it. If stdin or stdout is specified, and is a string,
it is a file to open as other file at the other end of the pipeline.
If it’s not a string, it is assumed to be a file object to use for
input or output. For a read pipe, only stdin can be specified, for a
write pipe, only stdout can be used.

	read pipeline (‘r’):

	stdin –> cmd[0] –> … –> cmd[n] –> Popen

	write pipeline (‘w’)

	Popen –> cmd[0] –> … –> cmd[n] –> stdout

Command arguments will be converted to strings.

The logger argument can be the name of a logger or a logger object. If
none, default is user.

Specifying binary access results in data of type bytes, otherwise str type
is returned. The buffering, encoding, and errors arguments are as used in
the open() function.

Process I/O Classes

	
class pipettor.DataReader(*, binary=False, buffering=-1, encoding=None, errors=None)

	Object to asynchronously read data from process into memory via a pipe. A
thread is use to prevent deadlock when both reading and writing to a child
pipeline.

Specifying binary access results in data of type bytes, otherwise str type
is returned. The buffering, encoding, and errors arguments are as used in
the open() function.

	
class pipettor.DataWriter(data, *, buffering=-1, encoding=None, errors=None)

	Object to asynchronously write data to process from memory via a pipe. A
thread is use to prevent deadlock when both reading and writing to a child
pipeline. Text or binary output is determined by the type of data.

The buffering, encoding, and errors arguments are as used in
the open() function.

	
class pipettor.File(path, mode='r')

	A file path for input or output, used for specifying stdio associated
with files. Mode is invalued on of standard r, w, or a

Logging Control

	
pipettor.setDefaultLogger(logger)

	Set the default pipettor logger used in logging command and errors.
If None, there is no default logging. The logger can be the name of
a logger or the logger itself. Standard value is None

	
pipettor.getDefaultLogger()

	return the current value of the pipettor default logger

Exceptions

	
class pipettor.PipettorException

	Base class for Pipettor exceptions.

	
class pipettor.ProcessException(procDesc, returncode=None, stderr=None)

	Exception associated with running a process. A None returncode indicates
a exec failure.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/diekhans/pipettor/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

pipettor could always use more documentation, whether as part of the
official pipettor docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/diekhans/pipettor/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pipettor for local development.

	Fork the pipettor repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:diehkhans/pipettor.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv pipettor
$ cd pipettor/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ make lint
$ make test
$ make test-all

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.6+, and for PyPy. Check
https://travis-ci.org/diekhans/pipettor/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests, supply the test class:

$ python -m unittest tests.pipettorTests.PipelineTests

To run a single of test, supply the test function:

$ python -m unittest tests.pipettorTests.PipelineTests.testTrivial

Credits

Development Lead

	Mark Diekhans <markd@ucsc.edu>

Contributors

History

1.0.0 (2023-06-29)

	Don’t use a process group; as it caused signals to not get propagated. Processes are explicitly waited for by pid, so this will not consume the exit of other process not create by this module.

0.8.0 (2023-02-05)

	make most optional arguments require keyword form to help prevent errors, especially if open() options are assumed

	added more functions to make Popen objects file-like objects

0.7.0 (2023-01-06)

	don’t fail if invalid UTF-8 characters are written to capture stderr

0.6.0 (2022-11-16)

	remove use of deprecated pipes module

0.5.0 (2020-12-25)

	Removed Python-2 support.

	Switch to using subprocess as a base rather interface directly
with Unix system calls. This lets subprocess deal with
various issues dealing with the Python interpreter environment.

0.4.0 (2018-04-21)

	Allow passing through universial newline mode for PY2.

	Fix bug with not using specified log level.

0.3.0 (2018-02-25)

	added open-stying buffering, encoding, and errors options

	source cleanup

0.2.0 (2017-09-19)

	Simplified and log of info and errors levels by removing logLevel options.

	Improvements to documentation.

0.1.3 (2017-06-13)

	Documentation fixes

0.1.2 (2017-06-11)

	First public release on PyPI.

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 pipettor

 		
 Pipettor Overview

 		
 Installation

 		
 Usage

 		
 Pipettor Library

 		
 Contributing

 		
 Credits

 		
 History

_static/up-pressed.png

_static/up.png

